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Many real networks are equipped with short diameters, high clustering, and power-law degree distributions.
With preferential attachment and network growth, the model by Barabasi and Albert simultaneously reproduces
these properties, and geographical versions of growing networks have also been analyzed. However, nongrow-
ing networks with intrinsic vertex weights often explain these features more plausibly, since not all networks
are really growing. We propose a geographical nongrowing network model with vertex weights. Edges are
assumed to form when a pair of vertices are spatially close and/or have large summed weights. Our model
generalizes a variety of models as well as the original nongeographical counterpart, such as the unit disk graph,
the Boolean model, and the gravity model, which appear in the contexts of percolation, wire communication,
mechanical and solid physics, sociology, economy, and marketing. In appropriate configurations, our model
produces small-world networks with power-law degree distributions. We also discuss the relation between
geography, power laws in networks, and power laws in general quantities serving as vertex weights.
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I. INTRODUCTION To sum up, some BA-type models and hierarchical net-

Networks of interacting agents such as humans, comput?0rks own largeC, smallL, and scale-freg(k). However,

ers, animal species, proteins, and neurons have been invedf#d! scale-free networks are not necessarily growing. The
gated vigorously. They are typically complicated, meaningnUmber of vertices may not change greatly over time for
that their structures are far from absolutely regular or entirelyetworks of friends, companies, interacting proteins, and
random. Two principal quantities characterizing networks ard’€Urons, to name a few. In view of this, a class of nongrow-
the average shortest path lengtrand the clustering coeffi- N9 scale-free networ_ks has_ been studled |n_Wh|ch_ whether
cientC. The number of edges in the shortest path average@_dges are created r.el|es on interaction qf vertices W|th intrin-
over all vertex pairs definek. Most real networks have SIC weights[10]. Weights represent the fitness of vertices to
smallL, namelyL =log n or even less, wherg is the num-  Win edgeq10-13 and are interpreted as, for example, capi-
ber of vertices. The local clustering coefficient is the normal-{als, social skills, activity levels, information contents, con-
ized number of connected triangles containing a specific veicentration or mass of physical or chemical substances, and
tex. If the vertex degree ig or there arék edges adjacent to the vertex deg(ee itself. The role of such vertex fitness was
the vertex, the normalization factor kék—1)/2. This quan- argued in growing models as w¢B]. To our surprise, scale-
tity averaged over all the vertices defin€s and real net- free p(k) emerges even from WEIght. dlstr|but|ons.dev0|d of
works usually have larg€. A smallL and a largeC cannot ~ Power laws[10,13-13. As a remark, if an edge exists when
be simultaneously realized either by lattices, trees, or th&® Sum of two vertices’ weights exceeds a prescribed thresh-
ordinary random grapHg.,2]. Then, Watts and Strogatz pro- old, the network is equivalent to the so-called threshold

posed the small-world networks that fulfill these require-9raPh[16]. This case eases analytical treatments.
ments at the same tinfd]. Our focus in this paper is the geographical extension of

Another important observation is that not all but manythe nongrowing scale-free networks, which has been over-
real networks have power-law degree distributiop) ~ looked so far. Actually, real networks are often embedded in
«k™, typically with scaling exponent 2 y<3 [2]. The topological spaces. Even the Internet, in which the speed of
small-world networks are short of the scale-free property. Irinformation transmission is technically independent of the
light of this, Barabasi and AlberBA) proposed a network Physical distance, is subject to geographical constraints be-
model that generates scale-free networks witt8 [2]. Two  cause of wiring cost5-7,17. In addition, it is often advan-
essential features of the BA model ai¢ network growth ~ tageous to map nonphysical quantities or networks into geo-
realized by sequentially adding vertices and edges, (ahd graphical spaces by, for example, the principal component
preferential attachment, meaning that newly introducedanalysis. Then, influence of the distance between graduated
edges are more prone to be linked to vertices with lakger traits is questioned.

Since the proposal of the BA model, its various extensions In fact, the Watts-Strogatz small-world network already
and related models, such as the fithess model and the hiera@ddressed this issue since it is constructed on lattice sub-
chically growing models, have been presented. These modet#rates[1]. Let us denote byy(r) the probability that two

are successful in incorporating more realistic aspects of nettertices with distance are connected. In lattice networks
works including tunabley and largeC that the original BA  supplied with additional edges, wheggr)=r~%, generated
model actually lack$2-9]. networks have small whené'is smaller than a critical value
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[18—20. Otherwise, global connections are too scarce tggraphical threshold model, an edge exists betwegeand
elicit the small-world property. The same is true for growingv; (i #j) if and only if w,+w;=6. Whenn is sufficiently
scale-free networks. Although the BA model is irrelevant tolarge, the weightv uniquely determines the vertex degiee
embedding spaces, which is actually the main cause foby
small C, it has been extended to incorporate underlying geo-
graphical spaces analr)=r"%. Then, aptransition from the k=n[1-F(6-w)]. 2
scale-free to nonscale-free regime as well as one from smallsing Eq.(2), the degree distributiop(k) (0<k<n) is writ-
L to largeL occurs at a certaid [4—7]. ten as

Althoughg(r) plays a key role in determining the network
structure, characterization gfr) in real-world networks still f[ _ —1( _ If)]

6-F 11

seems controversial. In applications such as the Internet rout- (K) = f(w)d—W:
ing [21] and neural networkg22], g(r) decaying exponen- P dk K
tially or in a Gaussian manner is commonly used. Exponen- nf[F‘l(l ——)}
tial decays are also inferred from biological neural networks n
[23]. However, many other data are in favorgtf)cr™>. For  Because the model is simple, C, and the correlation be-
instance, a recent extensive analysis of the Internet concludeseen the degrees of adjacent vertices can be analytically
g(r)cr~ [6]. Power laws also hold for macroscopic connec-derived as wel[13,15. The small-world properties charac-
tivity of brain regions identified by correlated activities terized by a largeC and a smallL are fulfilled for a wide
[g(r) «r~2?] [24] and for microscopic neural network®5]. I choice of f(w). More microscopically, vertices with small
social sciences, evaluatimgir) seems more difficult because degrees hav€(k) near 1 and form the peripheral part of the
of presumably larger noises. Accordingly, both power-lawnetwork. It is connected to the cliquish core with largemd
and exponential forms af(r) have been inferred, sometimes smallerC(k). Strictly speaking, the core consists of the ver-
even from identical datf26,27. In the face of the ambiguity tices withw= 6/2, and the separability of this kind is known
of available data, it is worthwhile to examine models to seen the graph theory16]. A similar separability is also men-
how various types of(r) affect network properties to help tioned in other literatur¢l1].
interpret real data. The degree distribution depends & ). An easily solv-

In the context of nongrowing geographical networks,able example is the exponential weight distribution given by
there is an algorithm that generatp&)=k™” with a pre- o aw
scribedy [17]. However, investigations of nongrowing geo- fw)=re O=w). ()
graphical networks are largely missing, particularly when in-We set #>0 because otherwise the network becomes the
teraction of vertices, which is not considered[iV], takes complete graph. Although(w) in Eq. (4) is not reminiscent
place. We examine a geographical threshold network modeif the power law, substitution of Ed4) into Eq. (3) yields
with various configurations. In Sec. Il, we review the non- p(k) <k [10]. It follows that C(k)«k2 and k(k) <k,

geographical threshold model with vertex weights. In Sec. — . )
Ill, we introduce the geographically extended model andVherek(k) is a measure of degree correlation, namely, the

analyze some practical cases, including the unit disk grapRverage degree of the neighbors of a reference vertex with
and the gravity model. Section IV is devoted to discussinglegree&k [13,15. The same scaling law is also maintained for

our model in the context of network search problems andhe logistic distributionf(w)=ge#"/(1+e™")? which is
real data. just a slight modification of Eq4) [15]. Another major class

of f(w) is the Pareto distribution defined by

3

1. NONGEOGRAPHICAL THRESHOLD NETWORK

a+l
MODEL f(w) = WEO(WWO) (W= w), (5

Berl:ore :jaking gheogrharigy into aﬁcougt,lwehbriﬁﬂy summayyherea,w,>0. Equation(5) leads top(k) <k ” with y=(a
rize the ordinary threshold network model, which constitutes 1 — . .
a subclass of networks with intrinsic vertex weights+1)/a>1’ C(k) k™, andk(k)«<k™ [15]. Particularly, C(k)

[10,13-15 «k™ is more consistent with real daf8] compared with
We preparen vertices denoted by; (1<i=<n), each of Clk) o«k™* derived frqm _Eq(_4). The asymptoticzs Is the same
which carries a weight variable, € R randomly and inde- o the Cauchy distributionf(w)=1/[m(1+w")] (We R),

pendently distributed as specified by the density functiovhich is devoid of the lower bound of. The inverse prob-
f(w). As mentioned in Sec. ty; quantifies the propensity for €M to determinef(w) from p(k) has also been addressed

_ i [14].
i to gain edges. Let A crux of the threshold model is that scale-frpek) re-
N AT sults from a wide class of(w). Analytical and numerical
F(w) = J_m f(w')dw @) evidence indicates that=2 is the baseline scaling exponent
of the threshold model, which contrasts wigk 3 for the BA
be the cumulative distribution function. We explain with ad- model[15]. Since the effect of a lower bound of seems
ditive weights since multiplicative weights are transformedmarginal, we mainly use the exponential and Pareto distribu-
into additive weights by taking the logarithm. In the nongeo-tions for the geographically extended model.
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Ill. GEOGRAPHICAL THRESHOLD NETWORK MODEL h(r) = A, (10)

To generalize the model introduced in Sec. Il in the geowhere §=0. This case generalizes the nongeographical
graphical case, we assume that vertices are uniformly anghodel explained in Sec. II, which correspondsste0. For a
mdependently distributed with denSIIyln a d-dimensional |arger B, geographica| effects are more manifested. As a

Euclidean space whose coordinates are denoted byinction of the weight, the degree is calculated as follows:
X, X2, ,Xg. Then a pair of vertices with weightg, w’, and

Euclidean distance are connected if and only if K(w) :f f(w’)dw’f » p dx, -+ dxg
(W+w)h(r) = 6, ) ° raire=o
0 ! d/,B
where h(r) is assumed to decrease Iin althoughh(r) in- :pf )\e-%W'quQr(g + 1><W+W ) dw’
creasing inr has also been considered in other models 0 2

[4,7,18. As a special case, E¢) with h(r)«r1 is equiva-

lent to the Boolean modé¢PR8]. = cle”‘”l“(9 + 1,)\w>, (11
Based on Eq(6), two vertices with weightsv andw’ are B
adjacent if where
=<ht! 0 (7) ) -1t
r= wrw' I'a,x) = ) t* e ldt (12
For a vertex with weightv, the degree is represented by is the incomplete Gamma function
k—f f(w’)dw’{number of vertices in a ball pr?? [(d
= CL = WP<E+ 1), (13
of radius :h'1< ,)} (8) ar_nd I'a)=T'(«,0) is the_ordinary Gamma_ function. To ob-
w+w tain p(k) from k(w), we just need to eliminater from Eq.

(11) as we have done in E@J).

However, an analytical form gi(k) corresponding to Eq.
(11) is unavailable due to the incomplete Gamma function.
Accordingly, let us deal with some special cases. By integrat-
ing Eq. (12) by parts, we derive

This recovers a general formulatioh0,13], in which k is
calculated from the joint probability as a function wfand
w’ that a pair of vertices are connected. Combination of Eq
(8) andf(w) providesp(k). If we take an average over but
not overr, we obtaing(r). Although g(r) decreases im if
h(r) does, it generally differs frorh(r). ol o
Max)=(a-D'e*D — (ae), (14)
A. Unit disk graph a'=0 % !
If f(w)=4d(wp), wheredis the delta function, two vertices whereZ is the set of integers. In the limjg—0, Eq. (14)

are adjacent wherv@h(r) = 6. Sinceh(r) decreases in, this  implies
condition is equivalent to<r,, where 2vyh(ry) = 6. Accord-

. d
ingly, F(— + l,)\W)
n-|r €= o o ay &
0 (r>rp), E !
and the generated network is the unit disk graph, which is\ctyally, k explodes asg—0 because Eq(15) means
applied to modeling broadcast and sensor netwptks29. lim;_o '((d/ B)+1,Aw) =2, reflecting the density notation

If f(w) has a finite support, the network resembles the uni¢ the vertex distribution. Putting aside this nonessential

disk graph in the sense that there exists an upper limit point '((d/g)+1,\w) is asymptotically independent o,
=ry only below whichg(r)>0. With this case included, z,q we have

long-range edges are entirely prevented, and the network has

Lxnd spoiling the small-world property. However, if we k(w) o e (16)
allow g(r)=p (r>rg) with 0<p=n~'<1, we have a type of
the Watts-Strogatz small-world networks with small[2].
Even so,p(k) is essentially homogeneous. To introduce the p(k) o & oc k2, (17)

scale-free property, we need to use more inhomogeneous V&fich reproduces the results for the nongeographical coun-
tex weights. terpart[10,13,15. For a sufficiently smalB, Eq. (15) effec-
tively approximates the incomplete Gamma function. Conse-
quently, scale-fregp(k) with y=2 or a slightly largery is

Let us consider the exponential weight distribution givenalmost preserved.
in Eq. (4) and set When g=d, we obtain

and

B. Exponential weight distribution with h(r)ecr=#
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k(w)c,€MT(2,AW) = ¢;(1 +Aw) (18)
and
k
)\e_)\w ex%l - C_1>
p(k) = o = . : (19

The degree distribution now has an exponential tail, and

hubs are less likely compared with EG.7). Another special
case withp=d/2 leads to

k(W) = ¢1(2 + 20w + \2W?) (20)
and
exp<1 -1/ E - 1)
(=2 G (21)
PO = e v aaw) 2¢3%\k-¢c,

Equation(21) is a stretched exponential distribution with a
minor modification factok /2, andp(k) decays more slowly
than in Eq.(19) naturally becaus@=d/2<d.

Similarly, k andw are connected by a power-law relation
if 8>0. Then,p(k) is a type of stretched exponential. In

PHYSICAL REVIEW E 71, 036108(2005

a

geographical preferential attachment models, the crossover

from a power-law tail to a stretched exponential tail occurs at d

a finite value of the control parameter similar@d4-7]. We

could say that, in our model, the same transition happens at

B=0. However, the gist is that for a sufficiently smal|
p(k) is practically indiscernible from the scale-free distribu-
tion.

Since it seems difficult to analytically calculate other net-
work characteristics such &asandC, we resort to numerics.
We uniformly scatter n=10 000 vertices in a two-

dimensional square lattice with side length 100 and periodic
boundary conditions. Because more edges obviously means,

smallerL, the mean degree denoted ¢y is kept at 20. The
analytic expression fotk) is available only when3=0 as
follows [13,15:

(K =e™(pl!+1\0), (22)

wherel is the side length of the area. Therefore, we manuall
modulated to preservgk) as we varyB. Excluding isolated
components, which actually consist of just a few vertices, w
show a dependence &fandC on B in Figs. 1a) and 1b),

respectively. Although the main simulations are done withy,

n=10 000(thickest line$, we also show results fom
=2000(thinnest liney, 4000, 6000, and 8000. The inset of
Fig. 1(a) shows the dependence bbfon n, with upper lines
corresponding to larger values 8f Figure 1a) shows that.

is insensitive ton only when 8<0.5. We expect that
«log n approximately holds in this regime. On the other
hand, we expedt «n*d or similar scaling for largeg. As 8

increasesC decrease to some extent but not too much to

spoil the clustering propertiFig. 1(b)]. Figures 1c), 1(d),
and Xe) show p(k) (crosses and C(k) (circles for 8=0.5,
B=1.5, andB=2.5, respectively. As expected, smalyields
a long tail indicative of the power laj¥Fig. 1(c)]. In contrast,
Fig. 1(e) shows thatp(k) decays much faster wheg is
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FIG. 1. Network properties witi(r)=r"# and the exponential
ight distribution withx =1 and(k)=20. Dependence d#) L and
(b) C on B for n=2000 (thinnest liney 4000, 6000, 8000, and
10 000(thickest lines is presented. The relation betwelemndn is
shown in the inset ofa), with upper lines corresponding to largér
Also shown are numerically obtainep(k) (crosses and C(k)
(circles with n=10 000 for(c) 8=0.5,(d) B=1.5, and(e) B=2.5.

Xarger. Consequently, networks generated by sufficiently

small B are endowed with the scale-free and small-world

®roperties simultaneously in a geographical context, which

extrapolates the nongeographical results y@th0. In regard
o the vertexwise clustering coefficient€(k) <k holds
when=0[13,15. The numerical results in Figs(d, 1(d),
and Xe) (circles supportC(k) =k 2 except that vertices with
small C(k) are more scarce for larget.

The probabilityg(r) that two vertices with distanceare
adjacent becomes

g(r) = f e Mdw f e dw/
0 (w+w/)/IrP=0

fﬂrﬁ x
0

re Mdw f
orP-w

=e™MP(\orf + 1),

[

e dw + f e Mdw

orB

(23
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indicating a stretched exponential decayrirunless=0.  Convergence ok(w) necessitatesa+d/3>0. In the limit
Particularly, the main decay rates 81 andB8=2, respec- w— <, it holds that
tively, correspond to the standard exponential and the Gauss- " g . a
ian, which are widely used in applicatiof1,22. As a gen- f (1+x) dxoc f dxoc ( W) (25)
eral remark,g(r) does not coincide withh(r)or even arl arl Wy
asymptotically.

The loss of the small-world property for largeseems to 1 herefore,
stem from the(stretchegl exponential decay aj(r). In addi- K(w) oc WA (26)
tion, g(r) derived here qualitatively disagrees with many real
data[6,24,23. As a result, exponential types gfr) and the and
Gaussiarg(r) may be far from universal. This is a striking

Wo/W Wpo/W

1
caveat to many fields, such as neuroscience, social dynamics, i<%)
and epidemics, which conventionally assume geographical p(K) o W K~ 1-(ap/d) 27
networks with exponentially decaying or Gaussgtn). We gw(d’ﬁ)‘l

do not explore consequencestif) that decays faster than

h(r)ecr?, since such ar(r) must yield even largeL. On . ] o
the other handy(r) with slower decays, dn(r) = (log r)%, is In contrast to the stretched exponential scenario clarified in
Sec. Il B, the power-law weight distribution produces scale-

examined in Sec. Il D. !
free p(k)=k™” with y=1+(apB/d).

C. Power-law weight distribution with h(r)ecr=# For r large enough to satisfgr?= 2w,
Quantities that can serve as vertex weights, such as the o d+1
city and firm sized30-33, number of pages in a website g(r) f (—) dw'
[34], land priceq 35], incomes[36], importance of airports rP-wy Wo

[9], and importance of academic auth¢®d, are often dis- . f@rﬂ_wo a (Wo>a+1< Wo )a y

tributed according to power laws. The history of these power —\ = 7
Wo \ W orP —w

laws is much longer, dating back to the Pareto and Zipf laws, Wo

than those recently found for networ&]. The simplest way W, a [b-1

to associate the power laws of networks with those of vertex = ( o Ow ) + f X" (b - x)73dx, (28)
—Wo 1

weights is simply to interpret the vertex degree as the weight.
However,w andk are generally nonidenticg®,15]. B : :

I ) . ) whereb= 6r”/w,. To show that the integral in ER8) tends

Let f(w) be the Pareto distribution given in Ecp). With o be prOportl%naI o1 as r_mg o u§q2evaluate

the  interaction  strength  decaying algebralcallybafb—lA(X)dX whereA(x) = x"3"L(b—x)"2. First, we obtain
[Eg. (10)], we have

b-1 b-1
s} b a
atl d +w d/B L a = i —a-1
kW) = p a ﬂ? T ] w+w aw’ IngL?fb ) A(X)dX>t|JTl _b—l . X & dx
wy Wo \ W 2 0
1 1
awgpn?? (d ==lim[1-(b-1)"3]==. (29
- ZE/B F(E +1|w@s-a abm[ b-D™]=-. (29
= (1+x)98 To bound the integral from the above in the lirbit> o, let
X J 1 adx (W= wy). (24)  us assumé>4. Noting thatA(x) takes the minimum ax
wo/w =(a+1)b/(2a+1) and thatd?A(x)/dx>> 0, we derive

b-1 (b+2)/3 a a
b b+2 +1b +1)b b+2
lim supbaj A(x)dx= lim f ] x‘a‘ldx+—[A( )+A<(a ) )][(a b _ }
b Jq bove | Jq b 1) 2 3 2a+1 2a+1 3

H(a 1)b A 1)“(b_1)_(a+1)b]}
2a+1 2a+1
—Ilm{

b—o

<i>a:|+l< b )a{ ab-2a-1 }+O(b“"‘)
2(b- 1) b+2 2\b-1/ [ (2a+1)(b-1)

3
_<5 2(2a+ 1) (30
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Equations(29) and (30) allow us to conclude an algebraic Before moving on to the Parefdw), let us note thaf(w)
decayg(r) «r@ in contrast to Eq(23). Discussion on net- with a finite support only allows local interaction, as ex-
work structure is postponed to Sec. Ill D, where we analyzeplained in Sec. lll A. Then the gravity model yieltls< n'/d,
the gravity model, which ends up with the same asymptotiavhich is realized by atomic and molecular interaction by

behavior ofp(k) andg(r). centrifugal or electric forces; they practically interact only
_ _ with others nearby. With the Parefdw), which facilitates
D. Gravity model with Pareto f(w) more global interaction, we obtain

As shown in Sec. Ill B, given the exponentially distrib- = a(wy ) d ww’ \ 8
utedw, h(r)=r~# with a sufficiently smallB yields more or k(w) = pJ (W) wd/21“<§ + 1)( ) dw’

less desired network properties. More rapidly decayifig
makesg(r) decrease too fast to elicit smdll How about =cw?”, (36)
h(r) that decays more slowly? To address this issue, we ap-
ply h(r)«(log r)~*. Since logr can be negative, let us re- where

wo Y0

write Eq. (6) as 792 a d
C2:p0d/ﬁ wgPr( D+ 1), (37)
w+w' = 6logr. (31 a-—
Equation(31) is equivalent to B
, Equation (36) is essentially the same as E®4), and B
e'e" =r’. (32)  >d/a must be satisfied forc,>0. The original gravity

model for social interaction hag=1 andd=2 [30], and

Since edge formation is suppressed by increasing egttwer hencea> 2 is necessary. Combination of EqS) and (36)

0, let us reinterpred in Eq. (32) as B, which does not essen-

tially change the model. Further rescaling of the parameter)éieIdS
by W=e¥, W=e"', andR=¢"V#r transforms Eq(32) into oK) = a,B\NSW_a_(d,B) _ aBCgB/dV"gk_l_@,;/d) (39)
WW c,d d '
RE — 0. 33 When rf>w3/ 6, we obtain
This is the gravity model often used in physics, sociology, (1) = orPiwg i(%>a+l<%>adw
economics, and marketirjg6,30,37-39 The gravity model 9 Wo\ W orP

W,
is suitable in describing interaction of particles in geographi- °

cal spaces when the physical gravify=2) or similar mass + Jw 3<%>aﬂdw
interaction based on, for example, populations or chemical w

substances, is active. In the sociological context, the original .

model stipulates3=1 [30], but 8 ranging from 0.2 to 2.7 - Vﬁ((a |099LB + 1)r—aﬁ (39)
have been inferred from later real d26,27,37—-40 fa WS '

The original gravity model is geographical but neglects
g g y geograp g Comparison of Egs(27) and (28) with Egs. (38) and (39

weight distributions. On the other hand, multiplicatively in- X X
teracting weights with power-la(w) are used to generate '€V€als that the asymptotic behaviorpik) and that ofg(r)
coincide with those of the additive weight model with the

solvable scale-free networks, but they ignore geografhly et k
We are interested in combined effects of geography and did2aretof(w) and h(r)=r £. Given the Paretd(w) and h(r)

persed vertex weights. The transformation from H4) to =~ =" B, whether multiplicative or additive interaction is used
(33) also rescale$(w) unless it is the delta function. When d0€s not matter so much. ,
the weights in Eq(31) follow the exponential distribution Numerically evaluated., C, p(k), andC(k) for varying 8

given in Eq.(4), the densityf(W) of the weights in Eq(33) are shown in Fig. 2. We set=10 000,a=1, wo=1, and

orPrwy Wo

* aBc,wY?
becomes (K = kp(k)dk = 2520 (40)
- dw 1\M1 P ap-d
f(V\/)=f(W)—=>\(—> , (34) .
dw W constant at 20. Figureg@ and 2b) show thatL andC have

a similar dependence gsito the additive weight model with
exponentialf(w) [Figs. 1@ and ib)]. Figure Za) indicates
that a transition from a small-regime to a large- regime
occurs somewhere arourit: 3. Since Fig. tb) supports that
C remains finite for large irrespective ofs, the small-world
ww/ property is suggested for smal. The transition appears
B =0 (35 similar to the phase transition in geographical BA models
[4,5]. However, in those modelsy does not change iB
and investigate the network structure wtew) is the Pareto >0 as far as the network is in the small-world regime,
distribution. whereas it does change hébait seqd 17]). As shown in Figs.

namely the Pareto distribution witk=\ and wy=1. Al-
though we have started with(r)«=(log r)™* and additive
weights, we switch to the gravity-model notation for conve-
nience. Now we rewrite Eq:33) as
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FIG. 2. Network properties for the gravity model with the Pareto

weight distribution witha=1, wy=1, and(k)=20. Dependence of

PHYSICAL REVIEW E 71, 036108(2005

FIG. 4. An example of the weighted gravity model on a one-
dimensional ring. We seh=100, 8=1, and(k)=6. The Pareto
weight distribution witha=1 andwy=1 is used.

poses, the vertices are aligned on a one-dimensional ring. In
spite of the small size, the figure is indicative of the scale-

free and small-world properties. It is visually comparable to

the BA-type scale-free small-world networks on a rirtd

and the Watts-Strogatz nonscale-free small-world networks
[1].
In other geographical network modelspecomes large if
g(r) decays faster thag(r)o<r=? with a certain5>0. For

(@ L and (b) Con g is presented. Also shown are numerically gy ample a nonscale-free weightless network model on a lat-

obtainedp(k) (crossey C(k) (circles with n=10 000, and the the-
oretical predictionp(k) o k=128 (lines) for (c) =2, (d) 8=3, and
(e) p=4.

2(c), 2(d), and Ze), p(k) (crossepsobey power laws whose
scaling exponents are well predicted by E88) (lines).

tice owns an ultrasmallL=0(1) for &6<d, small L
=0(log n) for d<é<2d, and largeL=0(n'd) for 5=2d
[19]. In another nonscale-free networ&=d+1 divides the
small-world and large-world regimdd8]. Also in a one-
dimensional geographical scale-free network model with

Consequently, the weighted gravity model realizes scale-frepreferential attachment, a similar phase transition occurs at

small-world networks wheng is small enough. In this
schemeyy is tunable by varying, B, andd. Circles in Figs.
2(c), 2(d), and Ze) indicateC(k) k™" with v'=2 or some-
what smaller. Finally, numerically obtainegir) shown by
circles in Figs. 8) (8=2) and 3b) (8=3) decays algebra-
ically as predicted by E(.39).

A generated network is shown in Fig. 4 fo=100,d=1,
a=1, wy=1, B=1, and hencey=2. For demonstration pur-

a b

10° 107
$ 3

10 10

10°® 10°

1 10 100
r r

FIG. 3. Numerically obtained(r) (circles and the prediction
by Eq. (39 (lines for the gravity model with(a) =2 and(b) 8

6=1[5,7]. Based on Figs. (h) and 2a) , we anticipate that
the gravity model has the phase transition at a critiéal
under which the network is geographical, scale-free, and
small-world at the same time. We do not examhie) de-
caying faster tharflog r)™* in the additive weight notation
[Eq. (31)] or equivalentlyh(r) decaying faster than algebra-
ically in the multiplicative weight notatiofEqg. (35)], for
which we expect too largd. Let us mention thath(r)
= (log r)%, which other models have largely neglected, may
be appropriate if weight interaction is effectively additive.
The results in Sec. Ill C and those in this section can be
captured as a spatial extension of the resultgl#], which
addresses the inverse problem to deternfing from p(k).
To obtainp(k) k™, a pair of vertices with weight& andw’
that follow f(w)=Ae™" with A=1 are connected with prob-
ability proportional to exp-(w+w’)/(=y+1)] [14]. In the
gravity model, we have definedv=expw) and W’
=expw’) so thatWw and W' follow the Pareto distribution.
The probability that the two vertices are connected is propor-
tional to the volume of a-dimensional ball with radius,,

=3. The other parameter values are the same as those used in Figvehere WW /r5=6. This probability is proportional t(rg
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«(WW / 9)¥Pcexd (w+w')d/B]. We should haved/g
=1/(y-1), which is consistent with Eq:38) sincea=A=1.

PHYSICAL REVIEW E 71, 036108(2005

p(k), which is of recent research interest, to general power-
law distributions in nature that have a long history tracing

back to Pareto. Let us discuss the relevance of our model to
real data.
There is a body of evidence that quantities potentially
Let us treat the gravity model with the exponential weightserving as vertex weights are distributed according to power
distribution. This configuration is equivalent to the modellaws f(w)=w™@"%. For example, the celebrated Pareto and
with additive weight interaction,h(r)=(logr)™, and a Zipf laws dictate that incomes and city sizes follow power

weight distribution less broad than the exponential distribulaws witha+1=2.0[30,31. More recent data analyses con-
tion. It follows that firm power laws in countrywise city sizéa+1=1.81-2.96

B ] s with meana+1=2.136 [32], f(irm sizes(a+1:12)[ [3]3], the
_ ' iz 9 ww' , number of pages per websita+1=1.65-1.9]1 [34], land
k(W)—pfO N F(2+1>< 6 ) dw prices(a+1=2.1-2.76[35], incomes(a+1=1.7—2.4[36],
and importance of airport@+1=1.67 [9], to name a few.
On the other hand, the original gravity model disregarding
weight distributions assumegd=1 andd=2 [30]. Application
of the values ofa mentioned above to the weighted gravity
model yieldsy=1+aB/d=1.32-1.98, which is too small to

E. Gravity model with exponential f(w)

- c1r<g . 1)wdfﬂ (41)

and

p(k) =

B\ fit real network data whose mostly falls between 2 and 3
1-8/d Bld [2]. As another indication, an extensive data analysis of the
di el (d/B+ 1] Internet revealed(r) «r~° with 5=1 [6]. If our model could
y exp{—k( k )Nd} (42) underlie the Internet, it should meaB=56=1, and hence
c,I'(d/g+1) ’ vy=1+aB/d=3/2 sinced=2. This y is again too small for
o ) . . the real Internet and related computer networks that have
which is a stretched exponential with a modifying factor=1_9_2_8[2]_
k~**#%, Furthermore, we have However, we regard that our model is not necessarily im-
plausible. First, our model and also the nonspatial threshold
model do not aim to describe growing networks; the Internet
is a typical example of growing networK&]. Our goal is
rather to discuss nongrowing networks in a geographical
dt= 4)\2K0(2)\VHTB), (43) context. As a supporting example, connectivity networks of
1 VtP-1 brain regions have=2, 5=ag=2, andd=2 [24], which are

] » ) roughly consistent with Eq38) . Actually, the brain network
whereKy(x) is the modified Bessel function of the second yyes not grow so much once an animal is born.

kind [[41], pp. 185, 187-188, and 2p&SinceK(x) tends to Second, estimation of involves much fluctuation be-

- 1 1 cause of the difficulty in data acquisition. Since the proposal
Ko(X) = \/:e‘x{l -= +o(—2>] (44) of the gravity model in which3=1 was inferred from rail-

2 8 way and highway travel da{&80], analyses of various social
activity data have offered a wide range 8f Among them
are investigations of air travel§=0.2-2.0 [26,37,38,
journey to work (B8=0.5-1.2 [27], migration (B
=1.59,2.49(39], cedar rapids direct contadtg=2.74) [39],

vvith marriage(8=0.59,1.53,2.49[39], and memorizable social
implies thatg(r) decays too fast to make the network Sma”'interaction(ﬁzZ) [40]. The ambiguity and the activity de-

world. A lesson is thaf(w) considerably influences network pendence ofg render the evaluation of pretty uncertain.

properties, which is not the case for the nongeographicabrecision ofg in classical studies was also low because of
counterpart[15]. Particularly, the Paretd(w) can yield  gma|l data sizes. To undertake more detailed and large-scale
scale-fregp(k) and the small-world properties, regardless of jata analysis as if6,40] is important.

whether weight interaction is additive or multiplicative. On  Third, the interaction strength, which is assumed to be
the other hand, the exponentidiv) explored in this section proportional tow;w,/r? in the gravity model, may be non-
and Sec. IIl B induces exponential typespék) and largel..  Jinear in weights. For example, usewfw/r# [26] results in
vy=1+apB/xd. Real data actually support 0.%X=1.05[37],

andx smaller than 1 increasesto make it more realistic. By

the same token, replacir(@v; +w,)/r? with (w;+w,)*/r? in

the additive notation effectively changgsto B/x.

Among the configurations considered in Sec. lll, the ad- Next, let us relate our model to network search problems
ditive weight model and the gravity model with scale-freein which an agent on a vertex attempts to reach an unknown
f(w) and scale-freéa(r) generate small-world networks with destination by traveling on edges. In small-world networks
scale-freep(k). In this regime, our model relates scale-free defined by lattices supplied with long-range connections with

J‘” cos (Verfu)

- " A Ao — )2
g(r) fo Ae e dw= 4\ P

_on orB
°°e2)\\0rt

=4\?

asx—o [41, p. 203, Eq. (43) asymptotically behaves as

g(r) = 2771/2)\3/2(0rB)—l/4e—2)\\f“6’rB (I’ N oo)_ (45)

With the arguments in Sec. Il D taken into account, &)

IV. SCALE-FREE NETWORKS AND SCALE-FREE
WEIGHT DISTRIBUTIONS
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densityg(r) «<r~%, which are essentially equivalent to the ran- V. CONCLUSIONS

dom connection moddR8], optimal search performance is
realized whens=d [20]. Even though the weighted gravity =~ We have proposed and analyzed a geographical nongrow-
model is a different model, simple adoption of our formulaing network model based on thresholding the sum of two
suggestsd=46=aB and y=1+aB/d=2. Computer-related vertex weights. Our model contrasts with geographical grow-
networks usually have/>2 presumably because they are ing models based on the BA model, and it naturally extends
growing. However, some social networks and peer-to-peethe threshold graph, the unit disk graph, and the gravity
networks, which may be considered to be nongrowing, owrmodel, which are widely used in a range of fields. In proper
v close to 2[2], enhancing the search ability. regimes, small-world networks with scale-free degree distri-
Similarly, emergence of small-world networks in a geo-butions and the connection probability algebraically decay-
graphical framework required+1> 5>d, while latticelike  ing in distance are generated, and they are consistent with
networks result froms>d+1, andé<d induces randomlike many real data. In contrast to the nongeographical threshold
networks with low clustering18]. Simple-minded substitu- model, what weight distribution is used matters for network
tion of s=aB leads tod+1>apB>d and 2<y<2+dl  properties. For scale-free networks to emerge, the weight
Since we usually havd=2 or 3, y associated with general should be distributed as specified by power laws. The weight
nongrowing small-world networks may be close to 2. Todistribution and the degree distribution generally have differ-
summarize, scale-free networks witharound 2 may be op- ent scaling exponents, and they are bridged by a relation
timal in the sense of the search performance and the smalirvolving the spatial dimension and the decay rate of the
world property. In additiony=2 is the baseline scaling ex- interaction strength.
ponent of the nongeographical threshold grap§], and it
may also be the case for general cooperative nongrowing
networks[10-15,17. In contrast,y=3 is an important phase-
transition point for percolation and dynamic epidemic pro-
cesseq42]. The BA model hasy=3, which may set the
baseliney for other competitive growing network—8|. lations in this work and S. Havlin and Y. Otake for helpful
Our current speculation stems from the ansgtzl+aB/d  comments related to this work. This study is supported by
=1+6/d plugged into the results obtained from other mod-RIKEN and a Grant-in-Aid for Young Scientis{8) (Grant
els. Further investigation of this issue is an important futureNo. 1570002p of Japan Society of the Promotion of Sci-
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